Amino Acid Composition of κ -Casein and Terminal Amino Acids of κ - and Para- κ -Casein¹

PIERRE JOLLÈS, CHARLES ALAIS AND JACQUELINE JOLLÈS

From the Laboratory of Biological Chemistry, Faculty of Science, University of Paris,
Paris, France, and Station Centrale de Microbiologie et Recherches laitières,
Jouy-en-Josas, France

The amino acid composition of κ -case in is reported. Carboxypeptidase liberates Ser, Thr, Ala and Val from κ -case in, Leu and Phe from para- κ -case in. These Leu and Phe residues may be involved in the linkage (probably an ester linkage) split by rennin during its action on κ -case in.

INTRODUCTION

Wake (1) described the preparation of κ -casein, but no amino acid composition was available until now. Hipp et al. (2, 3) recently reported a method for fractionating α -casein into components designated α_1 -, α_2 -, and α_3 -caseins; these authors have indicated the amino acid composition of all these fractions.

We now report the amino acid composition of κ -casein, its terminal amino acids, and also those of para- κ -casein. A short discussion will be included concerning the comparison of the new data with some previously reported results and the relation between κ -casein, para- κ -casein, and the caseino-glycopeptide obtained after rennin digestion of κ -casein.

MATERIALS AND METHODS

κ-Casein was prepared according to the method of McKenzie and Wake (4) and its caseino-glycopeptide according to Alais and Jollès (5); these two preparations appear homogeneous in sedimentation. The homogeneity of κ-casein has been discussed by Wake and Baldwin (6). Para-κ-casein was obtained by rennin digestion of κ-casein followed by the purification of the precipitate.

The amino acid composition has been deter-

mined on a total hydrolyzate (18 hr., at 110°, 6 N HCl) with a Technicon autoanalyzer according to the procedure of Piez and Morris (7). Tryptophan was determined according to Spies and Chambers (8).

The C-terminal amino acids were determined by the action of carboxypeptidase (pH 7.8; 10 mn., 37°, presence of diisopropyl phosphorofluoridate) and the N-terminal amino acids by the procedure of Sanger (9).

RESULTS AND DISCUSSION

The analytical results are summarized in Table I. They are expressed in grams/100 g. protein and in residues per mole of mol. wt. $26,000 \pm 3,000$ (10). The peptidic part accounts for 80%; the nonpeptidic part was estimated to 5%: 1.4% galactose, 2.4% Nacetylneuraminic acid, 1.2% galactosamine, and 0.217% P (5). Fifteen per cent of κ casein escaped to analysis by the methods used until now; the same discrepancy has already been observed for α-casein and different caseino-glycopeptides (5). The cystine present in k-casein is easily oxidized during the analysis (in absence of performic acid) and is titrated partially as cysteic acid. κ-Casein seems to have an amino acid composition similar to that of the α_3 component of Hipp et al. (3). Particularly noteworthy are the large differences for cystine, methionine, glycine, histidine, alanine, and tryptophan between κ -casein and α -casein

¹This research was supported by grant FG-Fr-112 from the U. S. Department of Agriculture (U. S. Public Law 480; 83rd Congress).

Amino acid	g./100 g. protein	Calculated residues/M.W. $26,000 \pm 3,000$
Asp	7.30	17
\mathbf{Thr}	6.64	17
Ser	6.09	18
Glu	17.35	36
Pro	8.78	23
Gly	1.31	5
Ala	5.41	18
Cys	1.40	1
Val	5.10	13
Met	1.0	2
Ileu	6.14	14
Leu	6.08	14
Tyr	7.40	13
\mathbf{Phe}	4.07	8
Lys	5.76	12
His	1.67	3
Arg	4.0	7
Try	1.05	1-2
$ m NH_3$		(17)
Total (g./100 g. protein)	96.55	223
(residues g./100	80.5	
g. protein)		

(3). Our κ -case in has a higher content in hydroxyamino acids than the α_3 fraction.

Carboxypeptidase liberates Ser, Thr, Ala and Val from κ -casein; these amino acids are the same as those released from the caseinoglycopeptide (11) obtained after rennin digestion of κ -casein. For this reason this peptide seems to be situated at the C-terminal side of κ -casein, but it was not possible until now to decide if there are several peptide chains or if Ser, Thr, Ala and Val form the C-terminal sequence.

Carboxypeptidase liberates Leu and Phe by its action on para-k-casein.

With Sanger's method, no N-terminal amino acids could be detected by the usual way for κ -casein, para- κ -casein, and the caseino-glycopeptide (treatment with FD-

NB at pH 8); the only DNP-amino acids obtained in a sufficient quantity were ϵ -DNP-lysine and O-DNP-tyrosine. The possible presence of DNP-galactosamine is under investigation.

By comparing the composition of κ -casein (about 5% glucidic and 80% peptidic part) and of its caseino-glycopeptide (28% glucidic and 72% peptidic part) (5, 11), it is possible to conclude that nearly all the sugars must be situated in the C-terminal part of κ -casein. As the Leu and Phe residues of para- κ -casein liberated by carboxypeptidase became accessible only after the reaction of rennin on κ -casein, they may be involved in the linkages split by this enzyme during its action on κ -casein. Some preliminary reduction experiments with LiBH₄ seem to indicate that this linkage may be an ester linkage.

ACKNOWLEDGMENT

The authors wish to express their appreciation to Mrs. A. Brochet and Mr. C. Multon for technical assistance.

REFERENCES

- WAKE, R. G., Australian J. Biol. Sci. 12, 538 (1959).
- HIPP, N. J., BASCH, J. J., AND GORDON, W. G., Arch. Biochem. Biophys. 93, 35 (1961).
- HIPP, N. J., GROVES, M. L., AND MCMEEKIN, T. L., Arch. Biochem. Biophys. 93, 245 (1961).
- 4: McKenzie, H. A., and Wake, R. G., Biochim. et Biophys. Acta 47, 240 (1961).
- Alais, C., and Jollès, P., Biochim. et Biophys. Acta 51, 315 (1961).
- WAKE, R. G., AND BALDWIN, R. L., Biochim. et Biophys. Acta 47, 225 (1961).
- Piez, K. A., and Morris, L., Anal. Biochem. 1, 187 (1960).
- 8. Spies, J. R., and Chambers, D. C., Anal. Chem. **21**, 1249 (1949).
- 9. SANGER, F., Biochem. J. 45, 565 (1949).
- McKenzie, H. A., and Wake, R. G., Australian J. Biol. Sci. 12, 734 (1959).
- Jollès, P., Alais, C., and Jollès, J., Biochim. et Biophys. Acta 51, 309 (1961).